# SYSTEM DYNAMIC MODELLING OF TURKISH ELECTRICITY MARKET

# M. Atilla Öner<sup>1</sup>

Yeditepe University Department of Business Administration 26 August Campus – İİBF 413, 34755 Kayisdagi, Istanbul, Turkey

#### Serbülent Kayıkçı<sup>2</sup>

Yeditepe University Department of Systems Engineering 26 August Campus 34755 Kayisdagi, Istanbul, Turkey

# ABSTRACT

This study includes current situation of Turkey electricity market, deregulation of electricity market of well-known countries and system dynamic models of electricity in UK. In last section, evaluation of Turkey electricity situation with using system dynamic models of UK (EMM model) could be found. This study assumes there should be a pool in Turkey electricity market as other countries electricity market which we have examined. Data that obtained in last section in different cases prove this proposal.

Also, there is a section for calculation of well-known countries electricity prices with using special system dynamic modelling programme, different formulae and methods. Comparison of each countries electricity prices obtained data and real data are also found in this section.

<sup>&</sup>lt;sup>1</sup> Assist. Prof. Dr.

<sup>&</sup>lt;sup>2</sup> Senior Student

# SYSTEM DYNAMIC MODELLING OF TURKISH ELECTRICITY MARKET

#### **1. INTRODUCTION**

During the 1990s fundamental change has gripped the heretofore monopolistic industry of electricity generation and supply. Until the 1980's, electricity was seen as a natural monopoly, and in most cases was publicly owned in Europe and privately owned in the US. This changed when Chile, Norway and the UK became the first countries to create competition in the electricity generation sector. The US, Australia, most of South America, and many other countries in Europe are currently in various stages of design or operation of similarly restructured electricity markets. [9]

Energy has always been one of the major issues that have to be evaluated carefully for the governments. Power production, particularly electric generation is a main necessity for the public, therefore all the governments main duty is serving the needs of the people that they govern. With the recent privatization era, updated regulation structures have been developed especially in the way of enabling private entities involvement to the various phases of the operations regarding energy generation. [13]

Power market deregulation has come farthest in the countries where it started. Norway's power market has expanded to encompass its Nordic neighbors - Sweden, Finland and Denmark - tied together by the Nordic power exchange Nord Pool. The United Kingdom has its own Pool, which has achieved many of the same goals although problems in the way the exchange works have slowed down the pace of reform. Both the Nordic countries and the United Kingdom now allow all consumers to choose who supplies their power, achieving competition within this sector.[4]

Mork suggested that developments in energy markets are finally turning towards the biggest energy market of all: electricity. Every continent in the world is contemplating some kind of deregulation of electricity markets. The immediate concern is usually to end monopoly control and bring prices down for business and end-users.[5]

The electricity market in the Northern European countries, Finland, Sweden and Norway, has encountered a fundamental change since the beginning of the 1990s. The previously regulated and monopolistic electricity industry has been deregulated and a free electricity

market has been created through legislative actions. The Finnish electricity market was deregulated by the Electricity Market Act, which has been in effect as of 1<sup>st</sup> June 1995. The Act includes prerequisites for competition in power generation, foreign trade, and power sales, so that the electricity market can function efficiently. It also establishes clear rules for the grid business, which operates in a position of a natural monopoly. The business areas open to competition now have a separate accounting from those in a monopoly position. [4]

Furthermore, there is an impact of deregulation on electricity prices. Russel has argued that The deregulation of electrical utilities has a substantial impact on the cost of commercial electricity. Where they have allowed utilities free market competition, prices have fallen by as much as 30 per cent. Internationally, deregulation has occurred in several countries in South America and in Great Britain. Changing the structure of electricity delivery has enhanced deregulation in both locations.[6]

US experience is the best example of impact on electricity. In US the average monthly industrial electricity bill nationwide in 1994 under a regulated environment was \$6,859.93. If they fully deregulated the market for electricity, that electricity bill would have fallen to \$5,067.08. That represents a saving of more than 26 per cent. These savings are in line with what occurred in the UK under full deregulation and in New Hampshire under partial deregulation. Several states, including California, Massachusetts, and Texas, are projecting that they will fully deregulate by the year 2000. Current legislation is pending in the US Congress that would cause national deregulation. [3]

Before deregulation, companies generated, transmitted, and sold at retail electricity in a given geographical region. This "natural monopoly" existed in theory to keep costs down by preventing duplication of services. As companies service areas began to overlap, they created nationwide transmission grids. These grids provided access to each other's generation particularly in high demand situations. After deregulation, companies had to choose whether to be generators, transmitters, or retailers of electricity. Because the grid connected all generators on one end and all retail users on the other, the division into three separate companies provided both competition and better efficiencies that forced prices down.[3]

## 2. MODELS FOR EVALUATING ELECTRICITY PRICES

Electricity prices are different in each well known countries these prices are shown in Table 1. [12]. We suggested that these variation are formed by countries electricity production, consumption, export and import data (Table 2 [10]). Also, GNP, GNP per capita, inflation rate affect electricity prices of countries. The data for 20 countries are listed on Table 3. [10]. All of these variables are used for methods for evaluating electricity prices.

Table 1: Electricity prices (c/kWh) of 20 countries[12]

|                  | Australia | Austria | Belgium | Canada | Denmark | Finland | France | Germany | Greece | Ireland | Italy | Japan | Norway | Portugal | Spain | Sweden | Switzerland | UK   | USA | Turkey |
|------------------|-----------|---------|---------|--------|---------|---------|--------|---------|--------|---------|-------|-------|--------|----------|-------|--------|-------------|------|-----|--------|
| Ind.<br>Prices   | 4,6       | 8,1     | 6,8     | 3,8    | 6,7     | 5,6     | 6,0    | 10,0    | 5,9    | 6,6     | 11,0  | 16,0  | 3,5    | 10,0     | 7,9   | 3,5    | 10,0        | 7,0  | 4,0 | 8,4    |
| House.<br>prices | 7,9       | 16,6    | 20,3    | 6,0    | 20,4    | 10,2    | 16,7   | 20,4    | 11,5   | 13,2    | 17,0  | 23,0  | 8,5    | 16,0     | 19,0  | 10,0   | 14,0        | 13,0 | 7,8 | 8,6    |

Table 2: Population, GNP and Inflation rate of 20 countries[10]

| Countries | Population | GNP      | GNP      | Inflation | Countries   | Population  | GNP      | GNP per  | Inflatio |
|-----------|------------|----------|----------|-----------|-------------|-------------|----------|----------|----------|
|           | (2000)     | (1999)   | per      | rate      |             | (2000)      | (1999)   | capita   | n rate   |
|           |            | (billion | capita   | (1999)    |             |             | (billion |          | (1999)   |
|           |            | \$)      |          |           |             |             | \$)      |          |          |
| Australia | 19.169.083 | \$416    | \$22.200 | %1,80     | Italy       | 57.634.327  | \$1.212  | \$21.400 | %1,70    |
| Austria   | 8.131.111  | \$191    | \$23.400 | %0,50     | Japan       | 126.549.976 | \$2.950  | \$23.400 | -%0,80   |
| Belgium   | 10.241.506 | \$243    | \$23.900 | %1,00     | Norway      | 4.481.162   | \$111    | \$25.100 | %2,80    |
| Canada    | 31.281.092 | \$722    | \$23.300 | %1,70     | Portugal    | 10.048.232  | \$151    | \$15.300 | %2,40    |
| Denmark   | 5.336.394  | \$128    | \$23.800 | %2,50     | Spain       | 39.996.671  | \$678    | \$17.300 | %2,30    |
| Finland   | 5.167.486  | \$109    | \$21.000 | %1,00     | Sweden      | 8.873.052   | \$184    | \$20.700 | %0,40    |
| France    | 59.329.691 | \$1.373  | \$23.300 | %0,50     | Switzerland | 7.262.372   | \$197    | \$27.100 | %1,00    |
| Germany   | 82.797.408 | \$1.864  | \$22.700 | %0,80     | Turkey      | 65.666.677  | \$409    | \$6.200  | %65,00   |
| Greece    | 10.601.527 | \$149    | \$13.900 | %2,60     | UK          | 59.511.464  | \$1.290  | \$21.800 | %2,30    |
| Ireland   | 3.797.257  | \$74     | \$20.300 | %2,20     | USA         | 275.562.673 | \$9.255  | \$33.900 | %2,20    |

|             | Electricity<br>production<br>(billion kWh)<br>(1998) | Electricity production by source |        | Electricity<br>consumption<br>(billion kWh)<br>(1998) | Electricity<br>exports<br>(billion<br>kWh)<br>(1998) | Electricity<br>imports<br>(billion<br>kWh)<br>(1998) |      |      |
|-------------|------------------------------------------------------|----------------------------------|--------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------|------|
|             |                                                      | Fossil<br>fuel                   | Hydro  | Nuclear                                               | Other                                                |                                                      |      |      |
| Australia   | 186                                                  | %89,85                           | %8,35  | %0                                                    | %1,80                                                | 173                                                  | 0,0  | 0,0  |
| Austria     | 56                                                   | %31,46                           | %65,92 | %0                                                    | %2,62                                                | 52                                                   | 10,5 | 10,3 |
| Belgium     | 79                                                   | %42,48                           | %0,49  | %55,72                                                | %1,31                                                | 75                                                   | 6,4  | 7,8  |
| Canada      | 551                                                  |                                  | %59,77 |                                                       | %0,80                                                | 485                                                  | 39,5 | 11,7 |
| Denmark     | 40                                                   | %90,80                           | %0,07  | %0,00                                                 | %9,13                                                | 33                                                   | 7,1  | 2,7  |
| Finland     | 75                                                   |                                  |        | %27,59                                                | %11,20                                               | 79                                                   | 0,3  | 9,6  |
| France      | 481                                                  | %10,77                           | %12,45 | %76,24                                                | %0,54                                                | 389                                                  | 62,0 | 4,0  |
| Germany     | 525                                                  | %65,77                           | %3,20  | %29,06                                                | %1,97                                                | 488                                                  | 39,1 | 38,6 |
| Greece      | 44                                                   | %8,26                            | %91,24 |                                                       |                                                      | 42                                                   | 0,9  | 2,5  |
| Ireland     | 20                                                   | %94,12                           | %4,63  |                                                       |                                                      | 18                                                   | 0,1  | 0,2  |
| Italy       | 243                                                  | %80,22                           | %17,30 | %0,00                                                 | %2,48                                                | 267                                                  | 0,9  | 41,6 |
| Japan       | 996                                                  | %56,68                           |        | %31,93                                                | %2,40                                                | 926                                                  | 0,0  |      |
| Norway      | 115                                                  |                                  | %99,16 |                                                       |                                                      | 111                                                  | 4,4  | 8,0  |
| Portugal    | 39                                                   | %63,14                           | %33,46 | %0,00                                                 | %3,40                                                | 36                                                   | 3,7  | 4,0  |
| Spain       | 179                                                  | %48,23                           | %19,16 |                                                       | %1,38                                                | 170                                                  | 5,6  | 9,0  |
| Sweden      | 157                                                  | %6,09                            | %46,49 | %45,16                                                | %2,26                                                | 135                                                  | 16,8 | 6,1  |
| Switzerland | 61                                                   | %3,74                            | %54,29 | %40,18                                                | %1,79                                                | 51                                                   | 29,6 | 23,6 |
| Turkey      | 117                                                  | %69,40                           | %30,50 | %0,00                                                 | %0,10                                                | 119                                                  | 0,2  | 2,3  |
| UK          | 343                                                  | %68,24                           | %1,49  | %28,48                                                | %1,79                                                | 331                                                  | 0,2  |      |
| USA         | 3.620                                                | %70,34                           | %8,96  | %18,61                                                | %2,09                                                | 3.365                                                | 12,8 |      |

Table 3: Electricity production, consumption, import and export data of 20 countries [10]

In 1<sup>st</sup> method initially we determine gain that is obtained by electricity production and sales. Obtained gain for each country approximately 2% of each country GNP. Gain is also calculated by electricity production, consumption, import and export rates and prices of each country. In this approach, we assume that electricity consumption and export costs are equal to average electricity prices. Also, we accept electricity production and electricity import costs are equal to half of the average electricity prices.

Formula (1) is given below:

# [(El. Prod + El. Import) \* (1/2) El. Prices] - [(El. Cons.+ El. Export)\* El. Prices] = GNP\*0.018\*(1-inflation rate) (1)

Results of this formula reach average electricity prices of countries and see computed values and real values of electricity prices are very similar in some countries. Results of the real electricity prices and computed electricity prices graph and influence diagram of 1<sup>st</sup>

method are shown in Figure 1 & 2. Influence diagram in Figure 2 is also used in special system dynamic model programme.

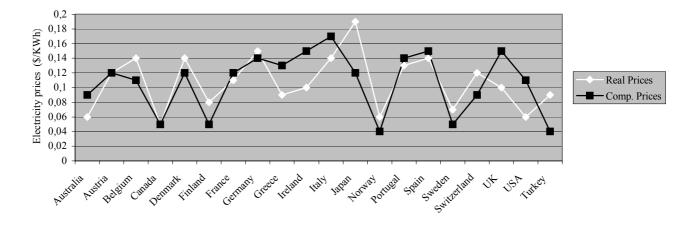



Figure 1 Graph of real and computed electricity prices of 20 coutries

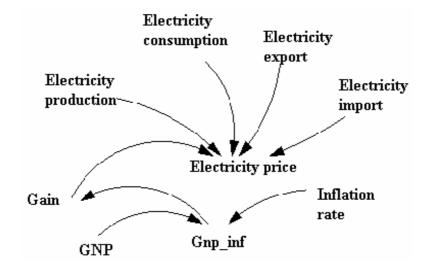



Figure 2 Influence diagram of 1<sup>st</sup> method

In 2<sup>nd</sup> approach first, we determine electricity production costs of each country. For this reason, costs of production electricity in each power plant have to be known. These costs are taken to be:

Fossil fuel: 4 c/kWh

Hydro: 3 c/kWh

Nuclear: 10 c/kWh

Other: 5 c/kWh

From these values annual electricity production cost of each country is found. Each countries gain should be found from electricity sale (70% profit accepted). Result of gain over electricity consumption gives average electricity prices.

Formula (2) is given below;

[(El. Prod. from foss.) \* 4 + (El. Prod. from hydr.) \* 3 + (El. Prod. from nucl.) \* 10 + (El. Prod. from other) \* 5] \* 1.7 = El. Consumption \* El. Prices (2)

Results of this formula reach average electricity prices of countries and see computed values are generally between countries industry and household prices.

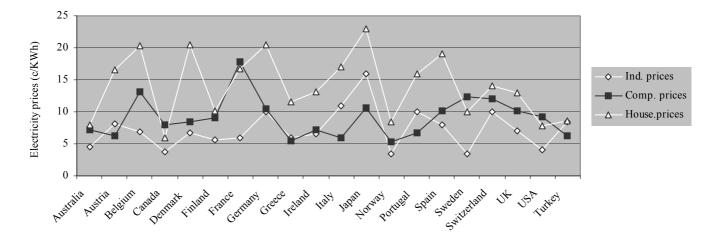



Figure 2 Graph of real and computed electricity prices of 20 coutries

In 3<sup>rd</sup> approach first, we determine annual electricity consumption per capita it is equal to electricity consumption of country divided by population. Then, apply inflation rate to GNP per capita. Finally, division of electricity consumption per capita to GNP per capita with inflation gives how much electricity prices (c/kWh) should people pay. But this value is not valid, because people give approximately 3% of their annual gain to electricity. So, obtained electricity prices multiplied by 0.03 and reach computed values.

Formula (3) is given below;

GNP Per capita \* (1-inflation rate) \* 0.03 = (electricity consumption / population) \* Electricity prices (3)

Results of this formula reach average electricity prices of countries and see computed values are generally between countries industry and household prices that values are shown in Figure 3

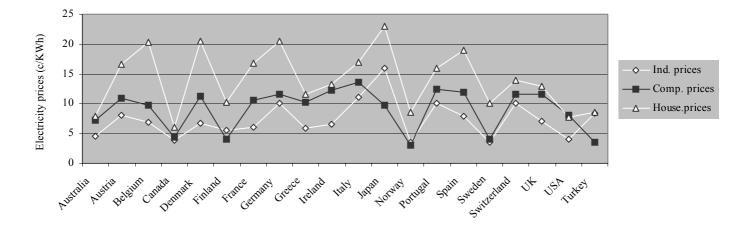



Figure 3 Graph of real and computed electricity prices of 20 coutries

#### 3. SYSTEM DYNAMIC MODELLING OF UK ELECTRICITY MARKET

Ford suggested that system dynamics has been used extensively to aid in resource planning in the electric power industry. Many applications constitute a major body of work that has proven useful to large and small power companies as well as to government agencies at the local, state and federal level. The work has been performed by utility analysts, government planners, consultants and academics.[1]

Since 1989, the electricity industry in the UK has undergone two radical changes: privatisation and introduction of competition. [11] In the process, it was fundamental to separate the monopoly elements of the business (transmission and distribution), from those elements, which would be subject to competition (generation and supply). [9]

Under restructuring in UK, Central Electricity Generation Board (Trans.& Gen.) was split into 4 parts, National power & Powergen (Gen.) divided fossil-fired power station, Nuclear Electric (Gen.) kept all nuclear generation plant and the ownership and operation of the transmission system were transferred to the newly created National Grid Company (NGC), which was given a specific remit to facilitate competition. [9]

NGC was given the responsibility for ensuring secure dispatch of generation and the operation of a daily power pool. The power-pool became the market place for buying and selling electricity between generators and suppliers. All customers have the freedom to choose their supplier. All the major generating companies are required to sell the electricity they produce into an open commodity market known as the Pool.[11]

Each generating unit has to declare by 10 am each day its availability to the market, together with the price at which it is prepared to generate, for each and every half hour of the following day. The units are then called to generate by the NGC in ascending order of price. The most expensive unit used establishes the system marginal price (SMP) Set by valuing the small possibility that electricity supply is disrupted (loss of load- LOLP) given the amount of generation capacity available. The regulator assesses and sets the value for loss of load (VOLL). The following equation shows how Pool Purchase Price is calculated.[11]

**Pool Purchase Price = SMP + [LOLP \* (VOLL - SMP)]** 

Figure 4 provides an overview of the electricity system in the UK showing both the flow of electricity and contract arrangements.



Figure 4 Electricity pool of UK.

The Electricity Markets Microworld is a computer simulation of a deregulated electricity market. The situation that players are faced with at the start of the simulation is a market that has recently been opened to competition. The incumbent generator, that had the monopoly of generation before deregulation, now faces competition from a number of new independent power producers (IPPs). These companies have entered with relatively cheap plants known as combined cycle gas turbines (CCGTs) that are powered by natural gas. A regulator oversees the operation of the market. The user of the microworld can select the role of the Incumbent, a New Entrant or the Regulator, set targets, define strategies, and test them running the simulation over a number of years.[11]

Figure 5 shows the structure of the default decision-making process of the two generators is given. When the market price rises, the forecast profitability of new CCGT plants increases, which is used as a signal to build new capacity. The capacity decision rules of the Incumbent and Independents differ. The capacity investment decision of the *Independents* is influenced by the market share of the *Incumbent*, with their ability to build new capacity increasing as the market share of the Incumbent increases. This rule was chosen to model the effect that was observed in the England and Wales market, where

distribution companies subsidised new entrants in an attempt to break the dominant position of the incumbent generator. The Incumbent's new investment decision is influenced by its profits as it will not be able borrow money to build new capacity if their existing plant is loosing money.[11]

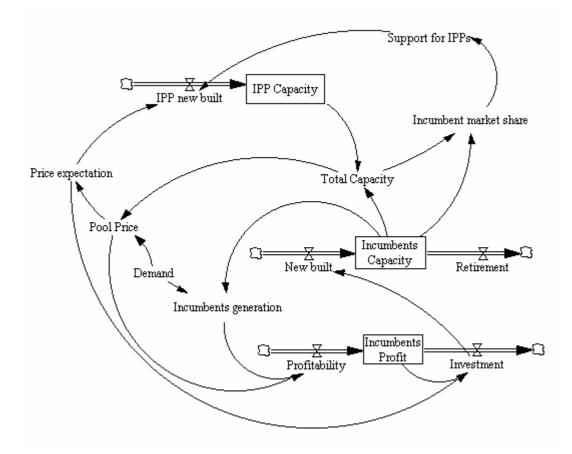



Figure 5 Stock and flow diagram of the investment decison [11]

Generators also have to decide how to price the generating capacity that they own. The short-term implications of the bidding decision for any generator are described in the following influence diagram.(Figure 6)[9]

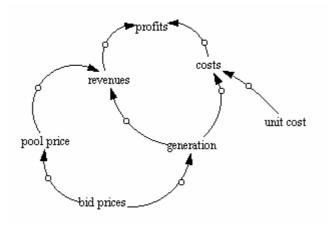



Figure 6 Influence diagram of bidding strategy [9]

# Formulae:

Formulae which are obtained from Figure 5 & 6 should be like that. They are not strictly true, but they are close to real equations.

**Revenues:** Pool price \* Incumbent generation (\$/period)

**Incumbent Profit:** Revenues - Investment (\$)

**Investment:** Price expectation - Incumbent profit (\$/period)

**New Built:** Investment / (CCGT construction Cost) (MW/period)

**Incumbent Capacity:** Incumbent Capacity + New built - Retirement (MW)

**Retirement:** Constant (MW)

Incumbent Generation: If Demand ≤ Incumbent capacity , (Demand), (Incumbent Capacity) (MWh/period)

**Demand:** Constant (MWh/period)

**Total capacity:** Incumbent Capacity + IPPs Capacity (MW)

Incumbent market share: Incumbent capacity / Total capacity

Support for IPPs: If incumbent market share  $\leq 0.5$ , (0.09-0.06\*Inc. market share), (0.12)

**Pool Price:** SMP + [LOLP \* (VOLL - SMP)] (\$/MWh)

| LOLP   | VOLL  | LOLP : Loss of load price                          |
|--------|-------|----------------------------------------------------|
| 0,018  | -0,2  | VOLL : Value of loss of load                       |
| 0,016  | -0,15 | SMP : System marginal price                        |
| 0,007  | -0,1  | VOLL = (Total Capacity - Demand ) / Total Capacity |
| 0,004  | -0,05 | _                                                  |
| 0,002  | 0     | _                                                  |
| 0,0015 | 0,05  | _                                                  |
| 0,001  | 0,1   | _                                                  |
| 0      | 0,15  |                                                    |

Price Expectation : Pool price \* Total capacity (\$/period)

**IPP new built:** (Price expectation \* support for IPPs) / (CCGT constr. cost) (MW/period)

**IPP capacity:** IPP new built + IPP capacity (MW)

## 4. EMM MODEL WITH TURKISH DATA

Table 4. shows total capacities and total production amount of each type of power plants. These values are determined by using tables on appendix pages.

|                  | Total Capacity<br>(MW) | Average<br>(GWh) | Definite<br>(GWh) |
|------------------|------------------------|------------------|-------------------|
| Total            | 27.519                 | 146.823          | 136.817           |
| Total (hydro)    | 11.939                 | 43.207           | 33.202            |
| Total (diesel)   | 230                    | 751              | 751               |
| Total (coal)     | 817                    | 5.403            | 5.403             |
| Total (lignite)  | 7.552                  | 48.630           | 48.630            |
| Total (LPG)      | 34                     | 255              | 255               |
| Total (fuel-oil) | 1.207                  | 7.584            | 7.584             |
| Total (CCGT)     | 5.693                  | 40.686           | 40.686            |
| Total (wind)     | 8,7                    | 40,5             | 39,5              |
| Total (other)    | 38,8                   | 267,5            | 267,5             |

Table 4 Power plants capacities and their production amounts.

Table 5 demonstrates Turkey power plants and their capacities which is obtained by tables on appendix pages. Power plants variable costs, fixed costs availability and plant life are also determined in Table 4.2 [12]. In this Table TEAS power plants (hydro, CCGT, coal and oil) are shown as an Incumbent and the other power plants (ÇEAŞ, Trakya Elk., Ova Elk., ENDA, Ayen Enerji, KEPEZ, Bilgin Elk., Berdan, Alaçatı.....) are demonstrated as an IPPs (independent power producer) (hydro and CCGT). New entrant (hydro and CCGT) capacities are not determined now, capacity values are tried on next section with applying system dynamic model.

| Table 5. Turkey power plants used in our model. |         |          |           |          |              |            |  |
|-------------------------------------------------|---------|----------|-----------|----------|--------------|------------|--|
| Generator                                       | Plant   | Capacity | Var. Cost | Fix Cost | Availability | Plant Life |  |
|                                                 | Туре    |          |           |          |              | (year)     |  |
| Incumbent                                       | CCGT    | 4500     | 22,5      | 30       | 0,85         | 40         |  |
| Incumbent                                       | Coal 1  | 5000     | 18        | 45       | 0,8          | 40         |  |
| Incumbent                                       | Coal 2  | 3500     | 21        | 45       | 0,8          | 40         |  |
| Incumbent                                       | Hydro 1 | 6000     | 12        | 15       | 0,8          | 40         |  |
| Incumbent                                       | Hydro 2 | 5000     | 12        | 15       | 0,75         | 40         |  |
| Incumbent                                       | Oil     | 1500     | 45        | 30       | 0,8          | 40         |  |
| IPPs                                            | Hydro   | 1000     | 12        | 15       | 0,8          | 40         |  |
| IPPs                                            | CCGT    | 1500     | 22,5      | 30       | 0,85         | 40         |  |
| New Entrant                                     | Hydro   | **       | 12        | 15       | 0,8          | 40         |  |
| New Entrant                                     | CCGT    | **       | 22,5      | 30       | 0,85         | 40         |  |

Table 5. Turkey power plants used in our model.

Table 6 shows assumed Turkey electricity demand data(we do not know Turkey electricity peak demand data it is assumption). Also initial demand, annual demand growth, incumbent initial cash & debt & fixed assets are determined in Table 6. New entrant initial cash will be tried when applying model.

|               |       |               |       | 1                   |                          |
|---------------|-------|---------------|-------|---------------------|--------------------------|
| % Peak Demand | hours | % Peak Demand | hours | initial peak        | Incumbent initial        |
| 100           | 76    | 59            | 474,5 | demand in MW        | fixed assets(million \$) |
| 97            | 148,5 | 56            | 552,5 | 24.000              | 8000                     |
| 93            | 148,5 | 53            | 552,5 |                     |                          |
| 89            | 217   | 50            | 467,5 | Annual Demand       | Incumbent initial        |
| 86            | 217   | 47            | 467,5 | Growth (%)          | debt                     |
| 84            | 234,5 | 44            | 442,5 | 4,5                 | 0                        |
| 81            | 234,5 | 42            | 400   |                     |                          |
| 79            | 349   | 40            | 350   | New Entrant initial | Incumbent initial        |
| 75            | 349   | 37            | 316   | Cash (m\$)          | cash (million \$)        |
| 71            | 498   | 33            | 182   | ***                 | 800                      |
| 69            | 498   | 31            | 88    |                     |                          |
| 67            | 490   | 29            | 11    | CCGT Construction   |                          |
| 64            | 490   | 26            | 5,5   | Time                |                          |
| 61            | 474,5 |               |       | 2 years             |                          |

Table 6 Turkey electricity demand data

Figure 7 below shows Turkey electricity pool. In here, generators (Incumbent, IPPs, New entrant..) produces electricity and all generated electricity are collected in a pool and distrubuted to suppliers than suppliers sells electricity to consumers.

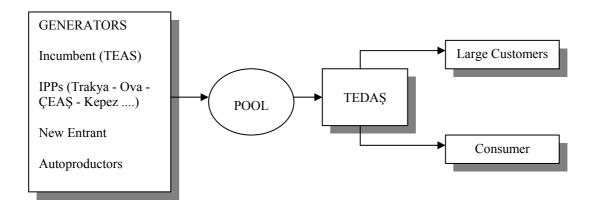



Figure 7 Turkey Electricity pool

We try different values on new entrant initial capacity [(hydro:400, CCGT:500), (hydro:500, CCGT:750)] in each cases. Also, we try different value of capacity ordered in

each period (eg. Incumbent: 100MW, IPPs: 100MW, New Entrant: 25MW...) and bidding prices for incumbent and IPPs power plants in each case. We reach different results with applying EMM model that is described in section 3 with Turkish data on Table 5 & Table 6. Goals of each cases (we could not show all cases because there are 27 case, cases results are demonstrated on conclusion part) are reach mimimum pool price, no shortage and approximate total demand values in 2010(Table 10).

In Table 7 we demonstrates one of cases initial values. From those initial values we reach some results in 2010(Table 8). Also, we have changed initial data and reach different results. All of those obtained data are shown in Table 8.

|               | Table / Illitial u       |     | 65                                    |      |
|---------------|--------------------------|-----|---------------------------------------|------|
| Run #         |                          | 5   |                                       |      |
| Incumbent     |                          |     | Capacity of New Entrant Hydro (MW)    | 500  |
| Bidding price | Difference from SMP      | %0  | Capacity of New Entrant CCGT (MW)     | 750  |
| Capacity (MW) | Order every period (OEP) | 100 | New Entrant Initial Cash (million \$) | 500  |
| IPPs          |                          |     |                                       |      |
| Bidding price | Difference from SMP      | %0  | Starting year                         | 2002 |
| Capacity (MW) | Order every period (OEP) | 100 | Ending year                           | 2010 |
| New entrant   |                          |     | No of period in a year                | 12   |
| Bidding price | Difference from SMP      | %0  |                                       |      |
| Capacity (MW) | Order every period (OEP) | 25  |                                       |      |

Table 7 Initial data of Case 5

| <b>F</b> |                                                                                    | _           |             |           |          |             |                |
|----------|------------------------------------------------------------------------------------|-------------|-------------|-----------|----------|-------------|----------------|
|          | Decisions                                                                          | Excess      | Pool Price  | Market    | share (% | 6) in 2010  | Total Capacity |
|          |                                                                                    | capacity in | (\$/MWh) in |           |          |             | (MW) in 2010   |
|          |                                                                                    | 2010        | 2010        |           |          |             | × /            |
|          |                                                                                    | 2010        | 2010        |           |          |             |                |
|          |                                                                                    |             |             | Incumbent | IPPs     | New Entrant |                |
| 1        | Case 5 Results                                                                     | %1          | 22,5        | 76        | 18       | 6           | 43.704         |
| 2        | If Incumbent capacity is 110MW<br>OEP instead of 100MW OEP                         | %2          | 22,4        | 77        | 17       | 6           | 44.547         |
| 3        | If Incumbent capacity is 120MW<br>OEP instead of 100MW OEP                         | %4          | 22,5        | 77        | 17       | 6           | 45.389         |
| 4        | If New Entrant capacity is 30MW<br>OEP instead of 25MW OEP                         | %1          | 22,6        | 76        | 18       | 6           | 44.125         |
| 5        | If New Entrant capacity is 40MW<br>OEP instead of 25MW OEP                         | %3          | 22,5        | 75        | 17       | 8           | 44.968         |
| 6        | If Incumbent bid price %10<br>instead of %0                                        | %1          | 23,5        | 57        | 33       | 10          | 43.704         |
| 7        | If both Incumbent & IPPs bid price %10 instead of %0                               | %1          | 24,5        | 72        | 16       | 12          | 43.704         |
| 8        | If Incumbent & IPPs bid price %10<br>and new entrant bid price %5<br>instead of %0 | %1          | 24,8        | 73        | 16       | 11          | 43.704         |

Table 8 Case 5 and different decisions given on Case 5 results

# 5. Conclusion

In this project, we examined countries electricity market restructuring and see there should be an electricity pool in electricity market. UK electricity model influenced us, so we use pool in our cases. Also we examine system dynamic model of UK. We use UK EMM model in 3<sup>rd</sup> section. In 2<sup>nd</sup> section we try to estimate electricity prices of countries with applying different formulas. In here, we see countries electricity prices is effected with electricity production, consumption, export and import values. Population, GNP, GNP Per capita, inflation rate values are also affect electricity prices.

In section four, we study EMM model with Turkish data. First, we decide capacities of each type of power plants and demand values. In cases parts different capacities are used for new entrant capacity and reach different results at the end of the our model. These results are:

# 1. <u>Pool price is between 22 - 25 \$/MWh in the year of 2010 & 21 - 23 \$/MWh in the year of 2002</u>

Pool price is generators production prices. We know 1999 generators production prices[7] (Table 8). But we couldn't say anything about electricity pool price of 2010 because we couldn't estimate what will be \$/TL rates. But, according to average electricity production cost (\$/MWh) the prices of electricity is decreased. In Table 9 obtained pool prices from the cases in the year of 2010 are shown.

| Month     |      | \$ rates | average cost<br>(\$/MWh) |
|-----------|------|----------|--------------------------|
| January   | 1999 | 315.220  | 35,2                     |
| February  | 1999 | 332.200  | 35,0                     |
| March     | 1999 | 352.405  | 34,6                     |
| April     | 1999 | 369.155  | 34,7                     |
| May       | 1999 | 390.248  | 34,6                     |
| June      | 1999 | 406.594  | 34,9                     |
| July      | 1999 | 421.362  | 35,3                     |
| August    | 1999 | 427.988  | 37,2                     |
| September | 1999 | 445.089  | 38,2                     |
| October   | 1999 | 460.603  | 39,4                     |
| November  | 1999 | 479.621  | 40,5                     |
| December  | 1999 | 516.150  | 40,2                     |

Table 8 Generator production prices in the year of 1999 [7]

| Cases          | Pool price in<br>2010 (\$/MWh) |                | Pool price in<br>2010 (\$/MWh) | Cases          | Pool price in<br>2010 (\$/MWh) |
|----------------|--------------------------------|----------------|--------------------------------|----------------|--------------------------------|
| Case 1         | 23                             | Case 3         | 22,6                           | Case 5         | 22,5                           |
| Case 1 disc. 2 | 22,5                           | Case 3 disc. 2 | 22,5                           | Case 5 disc. 2 | 22,4                           |
| Case 1 disc. 3 | 22,3                           | Case 3 disc. 3 | 22,4                           | Case 5 disc. 3 | 22,5                           |
| Case 1 disc. 4 | 22,6                           | Case 3 disc. 4 | 22,6                           | Case 5 disc. 4 | 22,6                           |
| Case 1 disc. 5 | 22,7                           | Case 3 disc. 5 | 22,5                           | Case 5 disc. 5 | 22,5                           |
| Case 1 disc. 6 | 24,1                           | Case 3 disc. 6 | 23,6                           | Case 5 disc. 6 | 23,5                           |
| Case 1 disc. 7 | 25,2                           | Case 3 disc. 7 | 24,6                           | Case 5 disc. 7 | 24,5                           |
| Case 1 disc. 8 | 25,3                           | Case 3 disc. 8 | 24,7                           | Case 5 disc. 8 | 24,8                           |
| Case 2         | 23,8                           | Case 4         | 24,5                           | Case 6         | 23,5                           |

Table 9 Obtained pool price value (\$/MWh) in the year of 2010

#### 2. Electricity capacity is between 43,000- 47,000 (MW) in the year of 2010.

According to result of our cases we say "there will be no electricity shortage also, there will be an excess capacity in the year of 2010". We know approximate electricity value in 2010 (Table 10) [8]. Obtained total capacity value (MW) from the cases in year 2010 is shown on Table 11. There is little difference between obtained total capacity and approximate total capacity values

Table 10 Approximate total capacity values in next years [8]

| Years | Approximate demand (MW) |
|-------|-------------------------|
| 2002  | 24.000                  |
| 2003  | 26.240                  |
| 2004  | 28.657                  |
| 2005  | 31.295                  |
| 2006  | 33.851                  |
| 2007  | 36.615                  |
| 2008  | 39.605                  |
| 2009  | 42.839                  |
| 2010  | 46.338                  |

Table 11 Obtained Electricity capacity (MW) in the year of 2010

| Cases          |        |                | Total Capacity<br>in 2010 (MW) | Cases          | Total Capacity<br>in 2010 (MW) |  |
|----------------|--------|----------------|--------------------------------|----------------|--------------------------------|--|
| Case 1         | 43.194 | Case 3         | 43.374                         | Case 5         | 43.704                         |  |
| Case 1 disc. 2 | 44.037 | Case 3 disc. 2 | 44.217                         | Case 5 disc. 2 | 44.547                         |  |
| Case 1 disc. 3 | 44.879 | Case 3 disc. 3 | 45.059                         | Case 5 disc. 3 | 45.389                         |  |
| Case 1 disc. 4 | 43.615 | Case 3 disc. 4 | 43.795                         | Case 5 disc. 4 | 44.125                         |  |
| Case 1 disc. 5 | 44.458 | Case 3 disc. 5 | 44.717                         | Case 5 disc. 5 | 44.968                         |  |
| Case 1 disc. 6 | 43.194 | Case 3 disc. 6 | 43.374                         | Case 5 disc. 6 | 43.704                         |  |
| Case 1 disc. 7 | 43.194 | Case 3 disc. 7 | 43.374                         | Case 5 disc. 7 | 43.704                         |  |
| Case 1 disc. 8 | 43.194 | Case 3 disc. 8 | 43.374                         | Case 5 disc. 8 | 43.704                         |  |
| Case 2         | 46.480 | Case 4         | 46.624                         | Case 6         | 47.032                         |  |

#### 3. <u>Electricity market with pool system supports private sector.</u>

Market share of Incumbent power plant (TEAS) is %91 and market share of IPPs power plant (Independent power plants) is %9 in the year of 2000 (Table 12). According to our cases results Incumbent market share decreases to about %70 and IPPs market share increases approximately %30 in the year of 2010. Obtained market share values from cases part in the year of 2010 is shown on Table 13

| 14010 121 | neumoent   | a II I 5 IIIdi Ket |                        |
|-----------|------------|--------------------|------------------------|
| Generator | Plant Type | Capacity (MW)      | Incumbent market share |
| Incumbent | CCGT       | 4500               | %91                    |
| Incumbent | Coal 1     | 5000               | IPPs market share      |
| Incumbent | Coal 2     | 3500               | %9                     |
| Incumbent | Hydro 1    | 6000               |                        |
| Incumbent | Hydro 2    | 5000               |                        |
| Incumbent | Oil        | 1500               |                        |
| IPPs      | Hydro      | 1000               |                        |
| IPPs      | CCGT       | 1500               |                        |

Table 12 Incumbent & IPPs market share in 2000

| Table 13 Obtained Market share values in 2010 | ) |
|-----------------------------------------------|---|
|-----------------------------------------------|---|

| Cases          | Market Share of   | Market Share of IPPs in | Market Share of New |  |  |
|----------------|-------------------|-------------------------|---------------------|--|--|
|                | Incumbent in 2010 | 2010                    | Entrant in 2010     |  |  |
| Case 1         | %77               | %18                     | %5                  |  |  |
| Case 1 disc. 2 | %77               | %18                     | %5                  |  |  |
| Case 1 disc. 3 | %78               | %17                     | %5                  |  |  |
| Case 1 disc. 4 | %76               | %18                     | %6                  |  |  |
| Case 1 disc. 5 | %75               | %18                     | %7                  |  |  |
| Case 1 disc. 6 | %58               | %33                     | %9                  |  |  |
| Case 1 disc. 7 | %73               | %16                     | %11                 |  |  |
| Case 1 disc. 8 | %74               | %16                     | %10                 |  |  |
| Case 2         | %61               | %28                     | %11                 |  |  |
| Case 3         | %77               | %18                     | %5                  |  |  |
| Case 3 disc. 2 | %77               | %18                     | %5                  |  |  |
| Case 3 disc. 3 | %78               | %17                     | %5                  |  |  |
| Case 3 disc. 4 | %76               | %18                     | %6                  |  |  |
| Case 3 disc. 5 | %75               | %18                     | %7                  |  |  |
| Case 3 disc. 6 | %58               | %33                     | %9                  |  |  |
| Case 3 disc. 7 | %73               | %16                     | %11                 |  |  |
| Case 3 disc. 8 | %74               | %16                     | %10                 |  |  |
| Case 4         | %73               | %16                     | %11                 |  |  |
| Case 5         | %76               | %18                     | %6                  |  |  |
| Case 5 disc. 2 | %77               | %17                     | %6                  |  |  |
| Case 5 disc. 3 | %77               | %17                     | %6                  |  |  |
| Case 5 disc. 4 | %76               | %18                     | %6                  |  |  |
| Case 5 disc. 5 | %75               | %17                     | %8                  |  |  |
| Case 5 disc. 6 | %57               | %33                     | %10                 |  |  |
| Case 5 disc. 7 | %72               | %16                     | %12                 |  |  |
| Case 5 disc. 8 | %73               | %16                     | %11                 |  |  |
| Case 6         | %72               | %15                     | %13                 |  |  |

#### REFERENCES

[1] Ford A. (1996), "System Dynamics and the Electric Power Industry", Jay Wright Forrester Prize Lecture

[2] İnter Yatırım Sektör Raporu (2002)

[3] Langford H.P., Scheuermann L. (1998), " Cogeneration and self-generation for energy agility ", USA

[4] Makkonen S., Risto L. (2001), " Analysis of power pools in the deregulated energy market through simulation ", Finland

[5] Mork E. (2000), "Emergence of financial markets for electricity: a European perspective", Norway

[6] Russel, S. (1996), "The Privatization of Electricity Supply in Britain and the Fortunes of Combined Heat and Power", England

[7] Sekizinci beş yıllık kalkınma planı (2001) Elektrik enerjisi özel ihtisas komisyonu raporu, Ankara

[8] Türkiye Elektrik Dağıtım ve Tüketim İstatistikleri (1999) TEDAŞ APK

[9] Vlahos K. (1998), "The Electricity Markets Microworld", London Business School London, England

[10] http://www.geographic.org

[11] http://www.london.edu/kvlahos/project/eml.htm

[12] http://www.tedas.gov.tr

[13] http://www.doingbusinessinturkey.com/articles/eml.html

# APPENDIX

Table A1 Turkey Power Plants & Capacities (ordered by total capacity) [2],[7],[12]

|    | Company      | Туре     | Power Plant Name    | Place      | Total Capacity<br>(MW) | Average<br>(GWh) | Definite<br>(GWh) |
|----|--------------|----------|---------------------|------------|------------------------|------------------|-------------------|
| 1  | TEAŞ         | Hydro    | ATATÜRK             | Ş.URFA     | 2405                   | 8900             | 7400              |
| 2  | TEAŞ         | Hydro    | KARAKAYA            | DİYARBAKIR | 1800                   | 7500             | 6800              |
| 3  | TEAŞ         | CCGT     | BURSA               | BURSA      | 1432                   | 10024            | 10024             |
| 4  | TEAŞ         | Lignite  | AFŞİN-ELBİSTAN      | K.MARAŞ    | 1360                   | 8840             | 8840              |
| 5  | TEAŞ         | CCGT     | AMBARLI KÇ(CC)      | İSTANBUL   | 1350,9                 | 8780             | 8780              |
| 6  | TEAŞ         | Hydro    | KEBAN               | ELAZIĞ     | 1330                   | 6600             | 5820              |
| 7  | TEAŞ         | Lignite  | HAMİTABAT KÇ        | KIRKLARELİ | 1200                   | 7800             | 7800              |
| 8  | TEAŞ         | Lignite  | SOMA B              | MANİSA     | 990                    | 6435             | 6435              |
| 9  | TEAŞ         | Hydro    | ALTINKAYA           | SAMSUN     | 702                    | 1632             | 1236              |
| 10 | TEAŞ         | Hydro    | BİRECİK             | Ş.URFA     | 672                    | 2516             | 2516              |
| 11 | TEAŞ         | Lignite  | KEMERKÖY I,II,III   | MUĞLA      | 630                    | 4095             | 4095              |
| 12 | TEAŞ         | Lignite  | YATAĞAN             | MUĞLA      | 630                    | 4100             | 4100              |
| 13 | TEAŞ         | Fuel-oil | AMBARLI             | İSTANBUL   | 630                    | 4100             | 4100              |
|    | TEAŞ         | Lignite  | ÇAYIRHAN1,2,3,4     | ANKARA     | 620                    | 4030             | 4030              |
| 15 | TEAŞ         | Lignite  | SEYİTÖMER           | KÜTAHYA    | 600                    | 3900             | 3900              |
| 16 | TEAŞ         | Hydro    | OYMAPINAR           | ANTALYA    | 540                    | 1620             | 482               |
|    | ÇEAŞ         | Hydro    | BERKE               | ADANA      | 510.75                 | 1700             |                   |
| 17 | TRAKYA ELK.  | CCGT     | UNİMAR              | TEKİRDAĞ   | 504                    | 3780             | 3780              |
| 18 | TEAŞ         | Hydro    | H.UĞURLU            | SAMSUN     | 500                    | 1217             | 820               |
|    | TRAKYA ELK.  | CCGT     | ENRON               | TEKİRDAĞ   | 498,7                  | 3740,3           | 3740,3            |
| 20 | TEAŞ         | Lignite  | YENİKÖY             | MUĞLA      | 420                    | 2730             | 2730              |
|    | TEAŞ         | Lignite  | TUNÇBİLEK B         | KÜTAHYA    | 300                    | 1950             | 1950              |
| 22 | TEAŞ         | Lignite  | KANGAL              | SİVAS      | 300                    | 1950             | 1950              |
|    | TEAŞ         | Coal     | ÇATALAĞZI           | ZONGULDAK  | 300                    | 1950             | 1950              |
| 24 | ÇEAŞ         | Hydro    | SIR                 | K.MARAŞ    | 283,5                  | 725              | 408               |
| 25 | TEAŞ         | Hydro    | GÖKÇEKAYA           | ESKİŞEHİR  | 278,4                  | 562              | 460               |
| 26 | OVA ELEKTRİK | CCGT     | OVA                 | KOCAELİ    | 253,4                  | 1900,5           | 1900,5            |
| 27 | Otoprodüktör | Coal     | İSDEMİR             | HATAY      | 220                    | 1650             | 1650              |
| 28 | TEAŞ         | Lignite  | ORHANELİ            | BURSA      | 210                    | 1365             | 1365              |
| 29 | TEAŞ         | Hydro    | BATMAN              | BATMAN     | 198                    | 483              | 483               |
| 30 | TEAŞ         | Hydro    | KARKAMIŞ            | GAZİANTEP  | 189                    | 652              | 652               |
| 31 | DOĞA ELK.    | CCGT     | ESENYURTI,II,III,IV | İSTANBUL   | 188,5                  | 1413,8           | 1413,8            |
| 32 | TEAŞ         | Diesel   | ALİAĞA GT+GÇ        | İZMİR      | 180                    | 540              | 540               |
| 33 | Otoprodüktör | CCGT     | BİS ENERJİ          | BURSA      | 174                    | 1305             | 1305              |
|    | TEAŞ         | Hydro    | ÖZLÜCE              | BİNGÖL     | 170                    | 414              | 290               |
|    | TEAŞ         | Hydro    | ÇATALAN             | ADANA      | 168,9                  | 596              | 270               |
|    | TEAŞ         | Hydro    | SARIYAR             | SAMSUN     | 160                    | 300              | 228               |
| 37 | TEAŞ         | Hydro    | GEZENDE             | İÇEL       | 159,3                  | 528              | 130               |
|    | Otoprodüktör | Fuel-oil | PETKİM ALİAĞA       | İZMİR      | 140                    | 1050             | 1050              |
| 39 | TEAŞ         | Hydro    | ASLANTAŞ            | ADANA      | 138                    | 569              | 360               |
| 40 | Otoprodüktör | CCGT     | ENTEK               | BURSA      | 129,9                  | 974,3            | 974,3             |
| 41 | TEAŞ         | Lignite  | TUNÇBİLEK A         | KÜTAHYA    | 129                    | 840              | 840               |
|    | TEAŞ         | Hydro    | HİRFANLI            | KIRŞEHİR   | 128                    | 400              | 178               |
| 43 | Otoprodüktör | CCGT     | AK ENERJİ(BOZÜYÜK)  | BİLECİK    | 127                    | 952,5            | 952,5             |
|    | TEAŞ         | Hydro    | MENZELET            | K.MARAŞ    | 124                    | 515              | 435               |
| 45 | Otoprodüktör | CCGT     | ÇOLAKOĞLU MET.      | İSTANBUL   | 123,4                  | 987,2            | 987,2             |

|          | Company                 | Туре             | Power Plant Name    | Place      | Total Capacity<br>(MW) | Average<br>(GWh) | Definite<br>(GWh) |
|----------|-------------------------|------------------|---------------------|------------|------------------------|------------------|-------------------|
|          | TEAŞ                    | Hydro            | KILIÇKAYA           | SİVAS      | 120                    | 332              | 277               |
| 47       | EN-DA                   | Hydro            | GÖNEN               | BALIKESİR  | 110,6                  | 47               | 35                |
| 48       | TEAŞ                    | Hydro            | DİCLE               | DİYARAKIR  | 110                    | 298              | 298               |
| 49       | Otoprodüktör            | CCGT             | AK NERJİ(ÇRKEZKÖY)  | TEKİRDAĞ   | 98                     | 784              | 784               |
|          | TEAŞ                    | Hydro            | KIRALKIZI           | DİYARBAKIR | 94                     | 146              | 111               |
| 51       | TEAŞ                    | Hydro            | KÖKLÜCE             | TOKAT      | 90                     | 588              | 343               |
| 52       | AYEN ENERJİ             | Hydro            | ÇAMLICA             | KAYSERİ    | 84                     | 429              | 243               |
| 53       | Otoprodüktör            | CCGT             | ZORLU ENERJİ        | BURSA      | 77,5                   | 581,3            | 581,3             |
| 54       | Otoprodüktör            | CCGT             | ERDEMİR             | ZONGULDAK  | 77                     | 577,5            | 577,5             |
| 55       | TEAŞ                    | Hydro            | KESİKKÖPRÜ          | ANKARA     | 76                     | 250              | 110               |
| 56       | TEAŞ                    | Hydro            | S.UĞURLU            | ADANA      | 76                     | 273              | 206               |
| 57       | TEAŞ                    | Hydro            | DOĞANKENT I.II      | GİRESUN    | 70,8                   | 314              | 62                |
| 58       | ÇEAŞ                    | Hydro            | KADINCIK I          | İÇEL       | 70                     | 345              | 190               |
|          | TEAŞ                    | Hydro            | DEMİRKÖPRÜ          | MANİSA     | 69                     | 193              | 78                |
|          | TEAŞ                    | Hydro            | ADIGÜZEL            | DENİZLİ    | 62                     | 280              | 15                |
|          | ÇEAŞ                    | Hydro            | SEYHAN I            | ADANA      | 60                     | 350              | 109               |
|          | Otoprodüktör            | CCGT             | AK ENERJİ(YALOVA)   | YALOVA     | 59,5                   | 446,3            | 446,3             |
|          | Otoprodüktör            | CCGT             | ZORLU ENERJİ        | KIRKLARELİ | 56,7                   | 425,3            | 425,3             |
|          | TEAŞ                    | Hydro            | DERBENT             | SAMSUN     | 56,4                   | 257              | 201               |
| -        | Otoprodüktör            | CCGT             | BOSEN               | BURSA      | 56                     | 420              | 420               |
|          | ÇEAŞ                    | Hydro            | KADINCIK II         | İÇEL       | 56                     | 320              | 200               |
|          | TEAŞ                    | Hydro            | KAPULUKAYA          | KIRIKKALE  | 54                     | 190              | 150               |
| -        | TEAŞ                    | Hydro            | KOVADA II           | ISPARTA    | 51,2                   | 222              | 121               |
|          | TEAŞ                    | Fuel-oil         | НОРА                | ARTVİN     | 50                     | 200              | 200               |
|          | Otoprodüktör            | Coal             | ERDEMÍR             | ZONGULDAK  | 50                     | 375              |                   |
| -        | TEAŞ                    | Hydro            | KEMER               | AYDIN      | 48                     | 143              |                   |
|          | KEPEZ                   | Hydro            | MANAVGAT            | ANTALYA    | 48                     | 220              |                   |
|          | KEPEZ                   | Hydro            | KARACAÖREN II       | BURDUR     | 47,2                   | 206              | 110               |
| -        | Otoprodüktör            | Fuel-oil         | TÜPRAŞ RAFİNERİ     | KOCAELİ    | 45                     | 242,3            | -                 |
|          | TEAŞ                    | Fuel-oil         | PS3-SİLOPİ(MOBİL)   | Ş.URFA     | 44,1                   | 330,8            |                   |
|          | TEAŞ                    | Lignite          | SOMA A              | MANİSA     | 44                     | 290              | 290               |
|          | Otoprodüktör            | Fuel-oil         | TÜPRAŞ RAFİNERİ     | İZMİR      | 44                     | 330              | 330               |
|          | Otoprodüktör            | Coal             | ATAER ENERJİ        | İZMİR      | 43,2                   | 324              | 324               |
| . •      | Otoprodüktör            | CCGT             | BİL ENERJİ          | ANKARA     | 41                     | 307,5            |                   |
|          | Otoprodüktör            | CCGT             | ENERJİSA            | KOCAELİ    | 40                     | 320              |                   |
|          | Otoprodüktör            | CCGT             | NUH ÇİMENTO         | KOCAELÍ    | 38,4                   | 288              |                   |
| <u> </u> | TEAŞ                    | Hydro            | YENİCE              | ERZİNCAN   | 37,89                  | 200              |                   |
|          | Otoprodüktör            | CCGT             | ESKİSEHİR SAN.ODASI | ESKİŞEHİR  | 37,89                  | 296              |                   |
|          | Otoprodüktör            | Coal             | KARDEMİR            | KARABÜK    | 37                     | 190              |                   |
|          | TEAŞ                    | Hydro            | KARACAÖREN I        | BURDUR     | 33                     | 190              |                   |
|          | Otoprodüktör            | CCGT             | CAMIŞ ELEK(TRAKYA)  | KIRKLARELİ | 32                     | 232,5            |                   |
|          | BİLGİN ELK.             | Hydro            | HAZAR I-II          | ELAZIĞ     | 30,1                   | 192              |                   |
|          | Otoprodüktör            | Fuel-oil         | ÇİNKUR              | KAYSERİ    | 30,1                   | 192              |                   |
|          | TEAŞ                    | Hydro            | ALMUS               | TOKAT      | 30<br>27               | 99               |                   |
|          | KEPEZ                   | -                | KEPEZ I             | ANTALYA    |                        | 169              |                   |
|          | TEAŞ                    | Hydro<br>Hydro   | TORTUM              | ERZURUM    | 26,4<br>26,2           | 109              |                   |
|          | Otoprodüktör            | -                | SEKA DALAMAN        | MUĞLA      | 26,2                   | 196,5            |                   |
| -        |                         | Coal             | PRELLİ              |            |                        |                  |                   |
|          | Otoprodüktör            | CCGT<br>Eval ail |                     | KOCAELİ    | 24,5                   | 183,7            |                   |
|          | TEAŞ<br>Otanına dülatür | Fuel-oil         | VAN(MOBİL SNT)      | VAN        | 24                     | 180              |                   |
| 95       | Otoprodüktör            | Fuel-oil         | TÜPRAŞ OA.RAFİNERİ  | KIRIKKALE  | 24                     | 180              | 180               |

|     | Company      | Туре     | Power Plant Name    | Place     | Total Capacity<br>(MW) | Average<br>(GWh) | Definite<br>(GWh) |
|-----|--------------|----------|---------------------|-----------|------------------------|------------------|-------------------|
| 96  | TEAŞ         | Hydro    | KUZGUN              | ERZURUM   | 22,65                  | 3                | 0                 |
|     | Otoprodüktör | Coal     | SEKA AKDENİZ        | İÇEL      | 20                     | 50               | 50                |
| 98  | Otoprodüktör | CCGT     | MODERN ENERJİ       | TEKİRDAĞ  | 20                     | 150              | 150               |
| 99  | Otoprodüktör | CCGT     | KARTONSAN           | KOCAELİ   | 19,8                   | 148,5            | 148,5             |
|     | Otoprodüktör | Fuel-oil | SEKA İZMİT          | KOCAELİ   | 18                     | 90               | 90                |
| 101 | Otoprodüktör | CCGT     | STARWOOD            | BURSA     | 17,3                   | 129,8            | 129,8             |
| 102 | TEAŞ         | Hydro    | ÇAYKÖY              | ISPARTA   | 17                     | 36               | 0                 |
|     | FETHİYE      | Hydro    | FETHİYE             | MUĞLA     | 16,5                   | 90               | 27                |
| 104 | ÇAYKÖY       | Hydro    | AKSU                | BURDUR    | 16                     | 36               | 35                |
| 105 | TEAŞ         | Hydro    | ÇILDIR              | ARDAHAN   | 15,36                  | 67               | 56                |
| 106 | TEAŞ         | Hydro    | İKİZDERE            | RİZE      | 15,12                  | 100              | 65                |
| 107 | TEAŞ         | Other    | DENİZLİ             | DENİZLİ   | 15                     | 90               | 90                |
| 108 | TEAŞ         | Hydro    | BEYKÖY              | ESKİŞEHİR | 15                     | 87               | 87                |
| 109 | TEAŞ         | Hydro    | TERCAN              | ANKARA    | 15                     | 51               | 28                |
| 110 | TEAŞ         | Diesel   | ENGİL GT            | VAN       | 15                     | 90               | 90                |
| 111 | TEAŞ         | Hydro    | ÇAĞÇAĞ III          | MARDİN    | 14,4                   | 42               | 42                |
|     | Otoprodüktör | Lignite  | ILĞIN ŞEKER         | KONYA     | 14,4                   | 36               | 36                |
| 113 | Otoprodüktör | Fuel-oil | DENİZLİ ÇİMENTO     | DENİZLİ   | 13,9                   | 104,3            | 104,3             |
| 114 | Otoprodüktör | CCGT     | EGE BİRLEŞİK ENERJİ | İZMİR     | 13                     | 97,5             | 97,5              |
| 115 | Otoprodüktör | Fuel-oil | KONYA ŞEKER         | KONYA     | 12,8                   | 32               | 32                |
| 116 | Otoprodüktör | Coal     | AFYON ŞEKER         | AFYON     | 12,8                   | 32               | 32                |
| 117 | Otoprodüktör | Coal     | TURHAL ŞEKER        | TOKAT     | 12,8                   | 32               | 32                |
| 118 | Otoprodüktör | CCGT     | ESKİŞEHİR ŞEKER     | ESKİŞEHİR | 12,8                   | 32               | 32                |
| 119 | TEAŞ         | Hydro    | TOHMA-MEDİK         | MALATYA   | 12,5                   | 59               | 59                |
| 120 |              | Hydro    | TOHMA-MEDİK         | MALATYA   | 12,5                   | 59               | 0                 |
| 121 | Otoprodüktör | CCGT     | YALOVA ELYAF        | İSTANBUL  | 12,3                   | 92,3             | 92,3              |
| 122 | Otoprodüktör | Fuel-oil | ETİ ALİMİNYUM       | KONYA     | 12                     | 60               | 60                |
| 123 | Otoprodüktör | CCGT     | CAMIŞ ELK(ÇAYIROV)  | KOCAELİ   | 12                     | 90               | 90                |
| 124 | Otoprodüktör | CCGT     | CAMIŞ ELEK(TOPKAPI) | İSTANBUL  | 12                     | 90               | 90                |
| 125 | Otoprodüktör | CCGT     | ŞAHİNLER            | TEKİRDAĞ  | 12                     | 96               | 96                |
| 126 | TEAŞ         | Diesel   | HAKKARİ(MOBİL)      | HAKKARİ   | 11,1                   | 83,3             | 83,3              |
| 127 | TEAŞ         | Hydro    | GÖKSU               | KARAMAN   | 10,8                   | 65               | 58                |
| 128 | Otoprodüktör | Coal     | BANDIRMA BORAKS     | BALIKESİR | 10,7                   | 80,3             | 80,3              |
| 129 | TEAŞ         | Hydro    | YERKÖPRÜ            |           | 10,56                  | 70               | 70                |
| 130 | Otoprodüktör | Coal     | ADAPAZARI ŞEKER     | SAKARYA   | 10,4                   | 26               | 26                |
|     | Otoprodüktör | Fuel-oil | TÜPRAŞ RAFİNERİ     | BATMAN    | 10,3                   | 28,3             | 28,3              |
| 132 | Otoprodüktör | Lignite  | SUSURLUK ŞEKER      | BALIKESİR | 10,2                   | 25,5             | 25,5              |
|     | Otoprodüktör | Lignite  | BOR ŞEKER           | NİGDE     | 10,1                   | 25,2             | 25,2              |
| 134 | Otoprodüktör | Other    | BAĞFAŞ              | BALIKESİR | 10                     | 75               | 75                |
|     | Otoprodüktör | LPG      | ORTA ANADOLU MEN.   | KAYSERİ   | 10                     | 75               | 75                |
| 136 | Otoprodüktör | Fuel-oil | POLİNAS             | MANİSA    | 10                     | 75               | 75                |
| 137 | Otoprodüktör | Coal     | AKÇA TEKSTİL        | DENİZLİ   | 10                     | 75               | 75                |
|     | Otoprodüktör | Coal     | SEKA ÇAYCUMA        | ZONGULDAK | 10                     | 75               | 75                |
| 139 | BERDAN       | Hydro    | BERDAN              | İÇEL      | 10                     | 48               | 10                |
|     | Otoprodüktör | Coal     | BURDUR ŞEKER        | BURDUR    | 9,7                    | 24,2             | 24,2              |
|     | Otoprodüktör | LPG      | GOODYEAR            | SAKARYA   | 9,6                    | 72               | 72                |
|     | Otoprodüktör | Lignite  | ELBİSTAN ŞEKER      | K.MARAŞ   | 9,6                    | 24               | 24                |
|     | Otoprodüktör | Lignite  | EREĞLİ ŞEKER        | KONYA     | 9,6                    | 24               | 24                |
|     | Otoprodüktör | Lignite  | ÇARŞAMBA ŞEKER      | SAMSUN    | 9,6                    | 24               | 24                |
|     | Otoprodüktör | Fuel-oil | AĞRI ŞEKER          | AĞRI      | 9,6                    | 24               | 24                |